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Letter to the Editors 

Note on the Paper “Boundary Conditions in Finite Difference Fluid 

Dynamic Codes” by C. K. Chu and Aron Sereny 

As pointed out by Chu and Sereny [l], the number of reported test calculations 
with different numerical methods for mixed initial-boundary value problems in 
fluid dynamics is very small. Although the present paper only considers a single 
basic difference approximation, the Lax-Wendroff scheme, and a test problem (2) 
where all advective terms are absent, the main points and results are therefore no 
doubt worth a close attention. Some remarks should however be made. 

First of all, Chu and Sereny [l, p. 4801 call attention to the difference between 
actual, wave-equation-like systems and the characteristic model equation 
ut + u, = 0. For a single equation (or systems with only forward characteristics), 
the use of overspecified boundary conditions to a dissipative scheme is sometimes 
not serious. To a system with characteristics of both types, coupled through the 
physical boundary conditions, such overspecifications may be devastating. Un- 
fortunately, this important difference between wave-equation-like systems and 
equations in characteristic form thus is not always observed by the authors. 

(i) On page 480, the final form (5) of the Lax-Wendroff scheme for a 
constant-coefficient case is e.g. not correct. The last term should be 

instead of 

-@t/2) c~~p~(Fj+~ + F;, - 2Fjn)/(&)” 

-(h/2)(G,“,, + G;-, - 2Gf”)/(d5)‘. 

(ii) On page 482, reference is made to stability proofs in a paper by 
Gustafsson, Kreiss, and Sundstrbm: “When Eqs. (2) are first cast into diagonal (or 
characteristic) form, then Gustafsson et al. have proved the stability for schemes 
(2), (3), (5), and (7).” The stability properties of the present problem (with non- 
characteristic quantities given as boundary conditions) however can not be deduced 
from the results for a system with characteristic boundary conditions. The reason 
for this mistake may be the fact that the paper by Gustafsson et al. actually also 
contains a stability analysis for the wave equation with boundary conditions of the 
present type, but only for the leap-frog and Crank-Nicholson schemes. An exten- 
sion of the results to the Lax-Wendroff scheme is cumbersome but not complicated 
(see the Appendix to this note). 
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A second reference to the paper by Gustafsson et al. is made on page 487, in an 
attempt to explain the “unexpected” behavior with boundary conditions (6) and (7) 
for problem C. The reason for the unbounded growth of p and u is however different 
and very simple. In problem C, the exact solution at the nonreflecting end should 
be a simple wave. This essential boundary condition is still only used in scheme (4). 
In all other cases, p and u are computed separately by different extrapolation 
schemes. As they stand, these schemes do not guarantee any simple-wave structure 
of the solution, and the observed exponential growth for boundary conditions (6) 
and (7) should be no more surprising than the damping obtained with conditions 
(3) and (5). 

APPENDIX 
STABILITY PROOFS FOR BOUNDARY CONDITIONS (l)-(7) AT A SOLID WALL (u = 0) 

The linearized Lax-Wendroff approximation to the system (2)in Chu and Sereny’s 
paper is 

v;n+l = vj’” + & (u,I:, - u;lzl) + a”p” $ (vi:, - 2v;‘” + Vj’YJ, 

t?l+l 
% = uj’” + a”p” 2A5 -!!lL (Vi:, - Vi?,) + a”p” g <u;,“, - 24” + zg,). 

For constant coefficients, the general solution in 12(x) with ~2 = 0 may be written 

24;” = &apVO’(q’ - $j zIz, 

vi” = gvo’(K13 + K;‘) zn. 

In this expression, K1 , 1(2 are the roots of the characteristic equation 

ZK = K + &p(K2 - 1) + $h2a2p2(K - I)“, 

with 1 K~ 1 < 1, 1 K2 1 > 1 for 1 z j > 1 and where h = dt/df. 

Inserting this general expression into the different numerical boundary conditions, 
we get: 

For boundary condition (I), Vz = 0 : V,’ = 0; stability. 

For boundary condition (2), Vi” = Vi”: 

0 = $V,,‘(K1 + Kil - 2) = &Vo’[K;‘(l + K1K2) - 21 

1 1 - 2 = vo’Kil 
Xap 

1 + Xap - K2 

and since 0 < hap/(1 -i- Asp) < 1, 1 ~~ I > 1, this implies V,’ = 0; stability. 
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For boundary condition (3): VT = 2Vin - Vi”: 

0 = +vo’(K12 + Kg2 - 2Kl - 2K,l + 2) 

= +VO’[K;‘(l + K,“K,‘) - 2K,71 + K1K2) + 21 

1 + A2a2p2 - - vo’ [K;’ (1 + xap)2 - 2Ki1 

= Vo’KL2 
i 

K2 - 
hap + i Xap - i 
1 + hap K2 1 + Xap ’ 

and since @up &i)/(l + xap)l < 1; 1 K2 I 3 1 this implies V,,’ = 0; stability. 

For boundary condition (4), Rin+l = (1 - hap) Ri” + AR;“: 

gives 

0 = apV,‘(z - 1 - Xap(q - 1)) 

= Xa2p2Vo’[~(K1 - K;‘) + +hp(Kl + K;l - 2) - K1 + 11 

= $Ja2p2VO’(Aap - l)(K1 + K;l - 2) 

= ~Xa2p2VO’(Xap - 1) K;l(K1 - 1)“. 

Since hap < 1 (stability condition for L - W scheme) and K1 # 1 for all 1 z 1 2 1, 
this implies V,,’ = 0; stability. 

For boundary condition (5), yin+’ - VT = h(u;” - uin): 

0 = v,,‘(z - 1 - &bp(K1 - Kc’)) 

= &bpV,,‘(K2 - K1 + hap(K2 -k K;l - 2)) 

= $lapVO’ [~~(l + Aup) - 2Xap + (hap + : i 2 ) K;‘] 

= $hUp V,‘K;‘( 1 + hap) (KS - y$ Tai )( K2 - ha’ - ’ ), 
1 + hap 

and in the same way as for condition (3), stability follows directly, 
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For boundary condition (6), Vin+’ - Vi” = 2&u;” - UT) - $i(u;ln - ~6”): 

0 = v,’ (Z - 1 - hUj3(K1 - K,‘) + ? (K12 - Kp2)) 

= V,’ 
( 
z- 1 - 

2hap A2a2p2 
1 - hap K1 - (1 - hap)3 K12 1 

v,’ (Z1i2 - 1 - 1 ?Aap K1)(Z1!’ + 1 + 
hap = 

1 - hap 

or, inserting the expression for K~ , 

0 7, -;;2p2)2 [z1/2(1 - hWp2) - 2 F q] 

x [z1/2(1 - Pa”p”) + 2 f q] 

v, (-22313 + (3 - x a ) 2 “p” z - I)(22313 + (3 - Pa3p3) z - 1) 
= 0 [z1/2(1 - hWp2) - z f q] x [zl/“(l - Pa3p3) + z f q] 

where q = (z2 - (22 - l)(l - 2 2 2 X a p )) lj2. To prove the stability, we must only 
show that the equation 

2y3 - (3 - h2a2p2) y2 + 1 = 0 

has no root with 1 y I2 = 1 z 1 > 1. By computing the roots for suitable values of 
hap in the interval 0 < hap < 1, this property has been verified experimentally. 

For boundary condition (7), VT+’ - Vi” + Vin+’ - Vi” = A(u;n+’ + u;“): 

0 = Vo’ [(z - 1) (1 + K1 ; Kil) 
-1 

- 

- +J(z + 1) 
KI K2 

2 1 
= V,’ [z - 1 

Xap 
- 22 1 - hap K1 1 ’ 

or, inserting the expression for K~ , 

0 = V,’ [z - 1 - 22 
z - 1 + Pa3p3 + (23 - (22 - I)(1 - hWp2))1/2 

1 - Pa3p3 I 

= 1 -7;a2p2 [-222 + 3(1 - Pa3p3) z - (1 - Pa”p”) 

rrt 2z(z2 - (22 - l)(l - h3a3p3))113] 

= 423 - (32 - 1)” (1 - hWp3 
v”’ 222 - (32 - I)(1 - AWp2) f 2z(z3 - (22 - I)(1 - h3a3p3))1/3 . 
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By computing the roots of 4z3 - (32 - 1)2 (1 - h2a2p2) for various Asp in the 
interval 0 < Asp < 1, it can be shown that for all I z I 3 1, we must have V,,’ = 0 
and the stability is thereby shown also for the last boundary condition. 
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